Interactive maps
This uses the same data from the mapping practical - airbnbs and hotels (OSM) in London.
## Reading layer `gis_osm_pois_free_1' from data source
## `C:\Users\Andy\OneDrive - University College London\Teaching\CASA0005\CASA0005repo\prac5_data\greater-london-latest-free.shp\gis_osm_pois_free_1.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 57306 features and 4 fields
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: -0.5090921 ymin: 51.29201 xmax: 0.2957296 ymax: 51.68432
## Geodetic CRS: WGS 84
## Reading layer `London_Borough_Excluding_MHW' from data source
## `C:\Users\Andy\OneDrive - University College London\Teaching\CASA0005\CASA0005repo\prac1_data\statistical-gis-boundaries-london\ESRI\London_Borough_Excluding_MHW.shp'
## using driver `ESRI Shapefile'
## Simple feature collection with 33 features and 8 fields
## Geometry type: MULTIPOLYGON
## Dimension: XY
## Bounding box: xmin: 503568.2 ymin: 155850.8 xmax: 561957.5 ymax: 200933.9
## Projected CRS: OSGB36 / British National Grid
To make our map interactive we change tmap_mode()
from plot to view..
8.33 Advanced interactive map
But let’s take it a bit further so we can select our layers on an interactive map..
Set up some pop up box information..so if we click borough we can a small table.
#library for the pop out tables
library(leafpop)
#remove the geometry for our pop up boxes to avoid
popupairbnb <- Accomodation_contained %>%
st_drop_geometry()%>%
dplyr::select(airbnbs_n, NAME)%>%
popupTable()
popuphotel <- Accomodation_contained %>%
st_drop_geometry()%>%
dplyr::select(hotels_n, NAME)%>%
popupTable()
Let’s set a few more things up:
- We are going to use Leaflet which requires the CRS to be in WGS84
- We need to define our colours based on the breaks we previously set
# WGS84
Accomodation_containedWGS84 <-Accomodation_contained%>%
st_transform(., 4326)
# leaflet library for interactive map
library(leaflet)
# set the colour palettes or breaks
pal1 <- colorBin("YlOrRd",
domain = Accomodation_contained$airbnbs_n,
bins = breaks$brks)
pal2 <- colorBin("Blues",
domain = Accomodation_contained$hotels_n,
bins = breaks$brks)
Similar to our static maps we must:
- First define the shape object
- The load the map layer (e.g. polygons)
Here, we also set a group which links the polygon both the legend and button selection options.
# Build the map
map <- leaflet(Accomodation_containedWGS84) %>%
# Airbnb layer
addPolygons(color = "white",
weight = 2,
opacity = 1,
dashArray = "3",
fillOpacity = 0.7,
fillColor = ~pal1(airbnbs_n),
popup = popupairbnb,
group = "Airbnb") %>%
# Hotel layer
addPolygons(fillColor = ~pal2(hotels_n),
weight = 2,
opacity = 1,
color = "white",
dashArray = "3",
fillOpacity = 0.7,
popup = popuphotel,
group = "Hotels") %>%
# Add layer control
addLayersControl(
# names to give the button selection options
baseGroups = c("OSM", "Toner", "Toner Lite", "CartoDB"),
overlayGroups = c("Airbnb", "Hotels"),
options = layersControlOptions(collapsed = FALSE)
) %>%
# Airbnb legend (tied to Airbnb group)
addLegend("bottomleft",
pal = pal1,
values = ~airbnbs_n,
title = "Airbnb count",
group = "Airbnb") %>%
# Hotel legend (tied to Hotels group)
addLegend("bottomleft",
pal = pal2,
values = ~hotels_n,
title = "Hotel count",
group = "Hotels")%>%
#add basemaps
addTiles(group = "OSM (default)") %>%
addProviderTiles(providers$Stadia.StamenToner, group = "Toner") %>%
addProviderTiles(providers$Stadia.StamenTonerLite, group = "Toner Lite")%>%
addProviderTiles(providers$CartoDB.Positron, group = "CartoDB")
map
If you want to explore Leaflet more have a look at the leaflet for R Guide
To see other basemap options (there are loads!) have a look here at leaflet extras
Cosh, Georgie. 2020. “GLA Housing and Land Short-term and holiday letting in London.”
Donoho, David. 2017. “50 Years of Data Science.” Journal of Computational and Graphical Statistics 26 (4): 745–66. https://doi.org/10.1080/10618600.2017.1384734.
Glassdoor. 2020. “50 Best Jobs in America for 2019.” https://www.glassdoor.co.uk/List/Best-Jobs-in-America-LST_KQ0,20.htm.
Grolemund, Garrett., and Hadley. Wickham. 2017. R for Data Science. O’Reilly.
Guha, Subhanil, Himanshu Govil, Anindita Dey, and Neetu Gill. 2018. “Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy.” European Journal of Remote Sensing 51 (1): 667–78. https://doi.org/10.1080/22797254.2018.1474494.
Li, Songnian, Suzana Dragicevic, Francesc Antón Castro, Monika Sester, Stephan Winter, Arzu Coltekin, Christopher Pettit, et al. 2016. “Geospatial big data handling theory and methods: A review and research challenges.” ISPRS Journal of Photogrammetry and Remote Sensing 115: 119–33. https://doi.org/10.1016/j.isprsjprs.2015.10.012.
Lovelace, Robin., Jakub. Nowosad, and Jannes. Muenchow. 2019. Geocomputation with R. CRC Press. https://doi.org/10.1201/9780203730058.
Pattabiraman, Kumaresh. 2019. “LinkedIn’s Most Promising Jobs of 2019.” https://blog.linkedin.com/2019/january/10/linkedins-most-promising-jobs-of-2019.
The Universities and Colleges Admissions Service. 2020. “UCAS Postgraduate courses.” https://digital.ucas.com/coursedisplay/results/providers?studyYear=2019{\&}destination=Postgraduate{\&}postcodeDistanceSystem=imperial{\&}pageNumber=1{\&}sort=MostRelevant{\&}searchTerm=data science.